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Abstract. The localisation properties of spin waves for Heisenberg ferromagnets with random 
uniaxial anisotropy energy and random exchange interaction is studied in the framework of 
the weak localisation theory. The correlation effect is found to influence the phase diagrams 
near the band edge region strongly. 

1. Introduction 

The problem of Anderson localisation has received considerable attention in recent 
years. Important progress has been obtained in understanding the localisation properties 
of independent electrons in a random potential (Lee and Ramakrishnan 1985). The 
main features of the electron spectrum in a disordered system is the existence of a 
mobility edge E,, which separates extended and localised states. The phase diagrams of 
the Anderson transition have been studied by various methods. Most researchers have 
considered the disordered potentials to be completely random at different lattice sites 
or, equivalently, have assumed the scattering centres to be point like in a disordered 
impurity model. 

Recently, Zhang and Chu (1988) have considered the correlation effect on the 
Anderson localisation in the vicinity of the band edge. They showed that the direct 
effects of the correlation on the conductivity and mobility edge are to modify the two- 
particle vertices and to play an important role in determining the phase diagrams. 

In contrast with the large amount of work done on electrons, phonons and photons 
(see, e.g., Kotov and Sadovskii 1983, Akkermans and Maynard 1984, Golubentsev 
1984), little work has been done on the localisation of spin waves. In recent work, 
Bruinsma and Coppersmith (1986) have studied random Heisenberg ferromagnets 
within the harmonic approximation. Igarashi (1986) has considered the antiferromagnet 
case. They have both shown that the localisation problem of a system with a random 
uniaxial anisotropy energy could be related to the Anderson model for electron local- 
isation and have found that spin waves are localised in the long-wavelength limit, as in 
the electronic case, in the presence of anisotropy energy, while the random exchange 
energy does not give rise to the localisation of spin waves in the long-wavelength limit 
in the absence of anisotropy energy. 
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In this work, we have studied the random Heisenberg model with the consideration 
of the correlation effect. The correlation enhances the back-scattering effect and results 
in a variation in the mobility edge. The longitudinal structure factor which changes its 
form at the mobility edge can be measured via the spin-polarised neutron scattering 
(Bruinsma and Coppersmith 1986, Serota 1988). The article is organised into two main 
sections. In section 2 we shall give the model Hamiltonian and the self-consistent 
equation determining the mobility edge. Results and discussion will be given in section 
3. 

2. The self-consistent equation 

The uniaxial anisotropy Heisenberg model is given by the Hamiltonian 

( 9 )  I 

where (ij) indicates a sum over pairs of nearest neighbours. The J ,  (=lo + 61,) and 
D, (=Do + 6D,)  are random variables, with configurational averages 

(Dijimp = Do 

(Jq)imp = JO 

(SD,aD,)mp = [Aa/(2s)21K(R1 -RI )  

( a , 6 J I m  )Imp = [Aex/(2S) * I W , m  
( 2 )  

where S denotes the magnitude of spin and K(R,  - R,) is the correlation function. It 
gives a finite value for R ,  # R, and becomes a &function in the absence of correlations. 
It corresponds to a structure factor. We exclude negative values of J and D so that the 
ground state is uniformly ferromagnetically ordered along the .z axis at low temperatures. 

Using the Holstein-Primakov transformation as 

s; = S - a:a, 

S:  = ( 2 ~ ) ' / * ( 1  - a : a , / 4 ~ ) a ,  

s; = (2S)1 '24(1  - a : a I / 4 S )  

a, = ~ - 1 1 2  IC, a k  exp(ikR,) 

( 3 )  

and the Fourier transforms of the boson operator a, defined by 

k 

then we get the following expression for the Hamiltonian apart from a constant term: 

where we have neglected the interaction term and the terms with non-conserving wave- 
number, and 

& k  = sJOz(1 - Y k )  + 2sDO 

Y k  = 2-1 IC, exp(ikp) 
P 

V k k g  = 2 S [ b D ( k - k ' )  f 6 J ( k -  k ' ,  0) + S J ( 0 ,  k' - k )  - dJ(k ,  k ' )  - 6J(-k ' ,  - k ) ]  
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where z and p denote the number of nearest-neighbour sites and the vector for the 
nearest neighbours; 6 D ( k )  and M ( k ,  k ’ )  are given by 

1 
6 ~ ( k )  = - 6 ~ ,  exp(-ikR,) 

~ ( k ,  k ’ )  = -E exp(-ikR,) 61, exp(ik’R,). 

N I  
1 

N 4 

describes the scattering of spin waves due to the random anisotropy energy and 
random exchange interaction. In the long-wavelength limit, we get 

(lVkk’/2)imp = ( A a / N ) S ( k - k ‘ ) f ( A , , / N ) T ( k ,  k ’ )  ( A a / N ) S ( k ’ )  ( 5 )  
with 

S(k - k ’ )  = 2 K ( R , )  exp( -i(k - k’) * R , )  
I 

T ( k ,  k ’ )  = 4[1 -  COS(^ - p)][l - cos(k’ p ) ] .  
P 

So the scattering due to random exchange interaction vanishes in the long-wavelength 
limit. This is also one of the reasons why, in the absence of anisotropy energy, spin waves 
will be not localised in the long-wavelength limit. 

The single-particle quantities are smoothly varying functions of disorder; so the 
low-order perturbation expression will be used to calculate the single-particle Green 
function. Within the Born approximation, the self-energy is given by 

so that 

- Im Z R  = y = n(Aa /N)S (0 )p (&)  = 1/22. 

The inclusion of the real part of the self-energy, defined in the simplest approximation 
as above, will lead to a shift of the band edge due to the interaction with random field. 
Now we can introduce the averaged single-particle Green function: 

G(Z) = ((Z - H)-’)imp = I/[. - &k - xk(Z)] 

with &k and &(Z) the energy spectrum and the self-energy correction, respectively. 
To study the transport properties and localisation problem, our model Hamiltonian 

can be mapped onto the localisation theory of the electron system of Volhart and Wolfle 
(1980). Following them, we first consider the Bethe-Salpeter equation for the response 
function q7pp8(q, U ) :  

with r$),, the irreducible vertex term, and 

qFP,(q,  U )  = - (1/27ci)(GR(p+pi, E + w)GA(pLp-, E)) .  
As shown by Vollhardt and Wolfle (1980), two classes of diagrams are important to 
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Figure 1. The irreducible vertex diagrams in the momentum representation: (a )  the Born 
approximation term; ( b )  the maximally crossed diagrams. 

the problem. Figure l(a) comes from the Born approximation. Figure l (b)  is the so- 
called maximally crossed diagrams which are important to the localisation. In the 
presence of correlation, each interaction line will be attached to a structure factor S(q). 
To lowest order in the random field, we can consider first the contribution of figure l(a) 
to the irreducible vertex. In the long-wavelength limit, it becomes 

r&L(q, W )  -- r 0 - - (Aa/"O)* 

By summing the ladder diagrams, we get 

where the diffusion constant is given by D o ( E )  = U$t(E) .  

a change in the diffusion constant D,(E) by the renormalised D ( w ,  E ) :  
For higher-order corrections, the diffusive form of equation (8) still holds just with 

The main steps of the derivation of equation (9) is given as follows (Vollhardt and 

Defining AGp = GR(p + k ,  E + w )  - GA(p, E ) ,  we obtain 
Wolfle 1980). 

[., - y p  * 4 - q+ ( E  + 0) + c,q(E)lq,ph, 

Using the Ward identity and summing over p andp '  we get the following equation: 

W E ( 4 ,  0) - w,,E(q,  = -dE) (11) 
where 

( P E ( %  0) = 2 q ; p k  0) 

V 3 4 ,  0) = ( u p  ' 4)qpEpp'(4, 

PP ' 

P' 

Expanding C p q p p j  with respect to the angle of p ,  we get the relation 
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where 

By multiplying up - q in equation (10) and summing over p and p ’ , we get 

[U + ME(q,o)l (?7;  - (l/4.’EqqE = 0 (14) 
with 

where d is the dimension of the system. By solving equations (11) and (14), we obtain 

q E  = ip(E)/[-io + D ( o ,  E)q2] (16) 
with D ( o ,  E )  given by equation (9). In equation (16), E acts as the Fermi energy in the 
corresponding electron problem. 

Near the mobility edge region, one has to consider the back-scattering effect 
expressed by the maximally crossed diagrams. Summing these diagrams using the time- 
reversal symmetry, we have 

The approximation is made because of the peaked character of the function qEp”l, 
and 

T’(P,P’ ,Pl)  = E [1 - exp(ipp)l[l - exP(iP’P)l[l - exP(-iPlP)l[1 - exP(iP1P)l. 
P 

It can be shown that this term is much smaller than the first term in the problem of 
long-wavelength localisation; so we shall neglect this term hereafter. Inserting rkyD) 
into equation (9) and considering the limit Ip + p ’  1 - 0, we have 

where the sum over q is restricted within q S n/lE LE = UEz(E),  the mean free path. 
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3. Results and discussion 

The actual calculation of locaiisation properties requires knowledge of spectrum &k. In 
the case of long-wavelength localisation, the mobility edge will be near the bottom of 
the band. So the effective-mass approximation will be employee. to calculate all the 
integrals. Near the left band edge, the spectrum is given by 

&k = E o  -t- k 2 / 2 m *  

where = 2SD0 is the gap introduced by anisotropy and m" = 1/2SJoa2, the effective 
mass. The corresponding momentum cut-offp, I f the integrals is taken asp, = V % c / 2 .  

The correlation function K(R, - RI)  .vi11 be con-idered to be short ranged: 

K ( R ,  - R I )  = exp(- IT - RI  I/&..). 
Then th- structure factor S(q) can be approximately divided into two parts: 

1 
S(q) = 1 + 2 J R o  dR 1 d R  exp(iq ' R )  K ( R ) .  

The correlation term vanishes when cy goes to zero. 

of the band edge: 
To simplify the problem, we treat the density of states approximately in the vicinity 

1 1 
p ( E )  = - - E h  G; - - - j 2 m ( e P  - e0)8 (E  - - r) 

X P  2Jc2 

In this way the effect of the real part of the self-energy can be involved from the very 
beginning. On the other hand, only the weak-scattering limit will be considered here: 
for y < E ,  it is expected that y smoothly varies near the band edge and is exactly equal 
to zero at band edge. Hence our approximation is reasonable near the band edge region. 

The phase diagrams near the band edge region are given numerically as shown in 
figure 2 for cy = 0, 0.3, 0.5, 0.7 and 1.0; the energy scale and the length scale will be 
taken as SIo = a = 1,  and the randomness is expressed as W2 = Aa. 

We see that direct consideration of the correlation effect has a strong influence on 
the mobility edge near the band edge region, and the mobility edge deviates from the 
curve of cy = 0 (no correlation) further with the increase in correlation. In physics, this 
means for any given path the coherent back-scattering effect is not limited +O the time- 
revers4  path only. All other paths within the correlation region will also contribute to 
the eff- .-t of coherent back-scattering. 

The band edge shifted when we considered the self-energy correction Re ZR, and 
the mobility edge shifted with the same tendency in small randomness. This is similar to 
the situation for electrons although the spin waves excited are Goldstone's bosons. Here 
the random anisotropy energy broke down the rotational symmetry. It is very clear that 
in the long-wavelength limit the renormalisation effect of the spectrurr caused by 6J, 
should be zero, and this is just the reqL irement of Goldstone's theorem. The real 
contribution to the renormalisation of the spectrum comes only from the random 
anisotropy energy; it is equivalent to the variation in the gap, and not only is it not equal 
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Figure 2. (a )  Mobility edge curves for CY = 0,0.3,0.5,0.7 and 1.0. The localisation region is 
at the left region of the curves. ( b )  The curvesare replotted using the shifted and renormalised 
energy E ;  the constant universal value is at E, = 0.0265. 

to zero in the long-wavelength limit, but also it is Wand E dependent. Then the spectrum 
may have values in the region of E d E ~ ;  it can have a ‘tail’ at the band edge. 

The most important contribution of the correlation function S ( p  - p ’ ) S ( p  + p ’ )  
comes from the region near the peak position of (AGp)2(AGpJ), which is W and a 
dependent. When W and a becomes larger, S ( p  - p ’ ) S ( p  + p ’ )  deviates from S2(0) 
further, and then it makes the coefficient of W4 smaller. The trend of the mobility edge 
is influenced by this effect in some regions; for example, it causes the curve ( a  = 1.0) to 
bend again in the negative direction on increase in the randomness. 

In the ‘one-loop’ approximation, Kotov and Sadovskii (1984) have considered the 
effect of Re  2 and Im 2 and have given the variation in band edge due to the real part 
of the self-energy. We have checked our numerical results based upon the method given 
by them and find that at small W(<0.5) the two methods give almost the same results. 

We have also studied the scaling behaviour of the system in the vicinity of the band 
edge. Cohen et af (1985) have shown that the electronic properties have some universal 
features in disordered systems near the band edge despite the complexity of real dis- 
ordered materials. As shown by Zhang and Chu (1988), when the characteristic length, 
which is about the reciprocal of a typicalp, is much greater than the correlation length 
aa, the problem can be mapped onto the white-noise model (WNM) with WS(0) as the 
effective disorder strength. So the results can be checked by the WNM. We can express 
E, by E ,  = ( E ,  - E b ) / ~ 0 3 ,  where Eb is the band edge and ~ 0 3  = W4S2(O)/(SJO)*, the 
energy scale. The curve of the mobility edge E,  can also be replotted using E,  as shown 
in figure 2(b),  which is consistent with the prediction of the WNM. The universal feature 
is very marked in small Wand a; on increases in Wand a,  the typical wavelength is no 
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longer much greater than the correlation length (or the atomic spacing a),  and the 
mobility edge should be described by both W2 and CY independently. 
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